On the dimension of diagonally affine self-affine sets and overlaps.

Károly Simon

Department of Stochastics
Institute of Mathematics
Budapest University of Technolugy and Economics www.math.bme.hu/~simonk
Joint work with Balázs Bárány and Michal Rams

ICERM
 February 2016

Co-authors

Bárány Balázs Univ. of Warwick/ TU Budapest (left) Michal Rams, Warsaw IMPAN (right)

(1) Introduction

- Abstract
- Notation
- An old result of Bárány Balázs
- Hochman-condition

Results

- Theorem A
- Theorem B
- Proposition C
- Theorem D
(3) Feng-Hu Theorem about Ledrappier-Young formula
- Notation
- The self-similar case
- Diagonally self-affine case

Stuff what I am going to have no time for

Abstract

In this talk we consider diagonally affine, planar IFS

$$
\Phi=\left\{S_{i}(x, y)=\left(\alpha_{i} x+t_{i, 1}, \beta_{i} y+t_{i, 2}\right)\right\}_{i=1}^{m} .
$$

Combining the techniques of Hochman and Feng-Hu we compute the Hausdorff dimension of the self-affine attractor and measures and we give an upper bound for the dimension of the exceptional set of parameters.

Definitions

(1) $\Phi=\left\{S_{i}(x, y)=\left(\alpha_{i} x+t_{i, 1}, \beta_{i} y+t_{i, 2}\right)\right\}_{i=1}^{m}$,
where $0<\left|\alpha_{i}\right|,\left|\beta_{i}\right|<1$, and we assume that

$$
S_{i}\left([0,1]^{2}\right) \subset[0,1]^{2}
$$

We call a Borel probability measure μ self-affine if it is compactly supported with support Λ and there exists a $\mathbf{p}=\left(p_{1}, \ldots, p_{m}\right)$ probability vector such that
(2)

$$
\mu=\sum_{i=1}^{m} p_{i} \mu \circ S_{i}^{-1}
$$

Lyapunov exponent

The entropy and the Lyapunov exponents of μ :

$$
h_{\mu}:=-\sum_{i=1}^{m} p_{i} \log p_{i}
$$

and
(3) $\quad \chi_{\alpha}:=-\sum_{i=1}^{m} p_{i} \log \left|\alpha_{i}\right|, \chi_{\beta}:=-\sum_{i=1}^{m} p_{i} \log \left|\beta_{i}\right|$.

Lyapunov exponents: $0<\chi_{1} \leq \chi_{2} \leq \chi_{3} \leq \chi_{4}$

Figure: Definition of the Laypunov dimension $D(\mu)$

Lyapunov dimension by formula

If
(4)

$$
k:=\max \left\{i: 0<h_{\nu}-\chi_{1}(\nu)-\cdots-\chi_{i}(\nu)\right\} \leq d-1,
$$

then we define the Lyapunov dimension of ν :

$$
D(\nu):=k+\frac{h_{\nu}-\chi_{1}(\nu)-\cdots-\chi_{k}(\nu)}{\chi_{k+1}(\nu)} ;
$$

If $h_{\nu}-\chi_{1}(\nu)+\cdots-\chi_{d}(\nu)>0$ then we define

$$
D(\nu):=d \cdot \frac{h_{\nu}}{\chi_{1}(\nu)+\cdots+\chi_{d}(\nu)},
$$

where h_{ν} is the entropy of the measure ν.

Lyapunov dimension on the plane

$$
D(\nu):= \begin{cases}\frac{h_{\nu}}{\chi_{1}(\nu)}, & \text { if } h_{\nu} \leq \chi_{1}(\nu) ; \\ 1+\frac{h_{\nu}-\chi_{1}(\nu)}{\chi_{2}(\nu)}, & \text { if } \chi_{1}(\nu)<h_{\nu} \leq \chi_{1}+\chi_{2}(\nu) ; \\ 2 \cdot \frac{h_{\nu}}{\chi_{1}(\nu)+\chi_{2}(\nu)}, & \text { if } h_{\nu}>\chi_{1}(\nu)+\chi_{2}(\nu) .\end{cases}
$$

What does this mean exactly? See it in a special case:

Lyapunov dimension in a very special case

Let ν be the self-affine
measure which corresponds to $p_{1}=p_{2}=p_{3}=\frac{1}{3}$.
$\chi_{1}=-\log \lambda<-\log \xi=\chi_{2}$
Clearly, $h_{\nu}=\log 3$

$$
D(\nu)= \begin{cases}\frac{\log 3}{-\log \lambda}, & \text { if } \lambda<\frac{1}{3} \\ \frac{\log 3-\log \lambda}{-\log \xi}, & \text { if } \lambda>\frac{1}{3}\end{cases}
$$

An old result

First we consider an old result due to Balázs Bárány. Notation

- $s_{\alpha}=\operatorname{dim}_{\mathrm{B}} \operatorname{proj}_{x} \wedge, s_{\beta}:=\operatorname{dim}_{\mathrm{B}} \operatorname{proj}_{y} \wedge$.
- d_{α} and d_{β} are the solutions of the equations:

$$
\sum_{i=1}^{m} \alpha_{i}^{s_{\alpha}} \beta_{i}^{d_{\alpha}-s_{\alpha}}=1 \text { and } \sum_{i=1}^{m} \beta_{i}^{s_{\beta}} \alpha_{i}^{d_{\beta}-s_{\beta}}=1
$$

Bárány's Theorem

Theorem 1.1 (Bárány (2011))
W.L.G. we may assume that $S_{i}\left([0,1]^{2}\right) \subset[0,1]^{2}$. Assume that $\left\{S_{i}\right\}_{i=1}^{m}$ satisfies Strong Separation Condition:
(5)

$$
S_{i}\left([0,1]^{2}\right) \cap S_{j}\left([0,1]^{2}\right)=\emptyset
$$

Then

$$
\operatorname{dim}_{\mathrm{B}} \Lambda=\max \left\{d_{\alpha}, d_{\beta}\right\}
$$

Hochman-condition

We say that an IFS

$$
\mathcal{G}=\left\{f_{i}(x)\right\}_{i \in \mathcal{S}}
$$

of similarities on the real line satisfies the Hochman-condition if there exists an $\varepsilon>0$ such that for every $n>0$

$$
\min \left\{\Delta(\bar{\imath}, \bar{\jmath}): \bar{\imath}, \bar{\jmath} \in \mathcal{S}^{n}, \bar{\imath} \neq \bar{\jmath}\right\}>\varepsilon^{n},
$$

where

$$
\Delta(\bar{\imath}, \bar{\jmath})=\left\{\begin{array}{cc}
\infty & f_{\bar{\imath}}^{\prime}(0) \neq f_{\jmath}^{\prime}(0) \\
\left|f_{\bar{\imath}}(0)-f_{\bar{\jmath}}(0)\right| & f_{\bar{\imath}}^{\prime}(0)=f_{\bar{\jmath}}^{\prime}(0) .
\end{array}\right.
$$

Examples when Hochman Condition holds

If the parameters of the IFS

$$
\mathcal{G}=\left\{f_{i}(x)=r_{i} x+t_{i}\right\}_{i \in \mathcal{S}}
$$

of similarities are algebraic, i.e.
both t_{i} and r_{i} are algebraic numbers
then either

- the Hochman-condition holds or
- there is a complete overlap, that is, there exist $n \geq 1$, and $\bar{\imath} \neq \bar{\jmath} \in \mathcal{S}^{n}$ such that

$$
f_{\bar{\imath}}(0)=f_{\bar{\jmath}}(0)
$$

Hochman Theorem

Suppose that an IFS $\Psi=\left\{r_{i} x+t_{i}\right\}_{i=1}^{m},\left|r_{i}\right|<1$ of contracting similarities on the real line satisfies the Hochman-condition. Let $\mathbb{P}:=\left\{p_{1}, \ldots, p_{m}\right\}^{\mathbb{N}}$. Then for the measure

$$
\begin{aligned}
\mu & =\mathbb{P} \circ \Pi^{-1} \\
\operatorname{dim}_{H} \mu & =\min \left\{1, \frac{h_{\mu}}{\chi}\right\},
\end{aligned}
$$

where h_{μ} is the entropy and χ is the Lyapunov exponent:

$$
h_{\mu}=-\sum_{i=1}^{M} p_{i} \log p_{i} \text { and } \chi=-\sum p_{i} \log r_{1}
$$

Hausdorff dimension of a measure

Here we recall the Hausdorff dimension of a probability measure μ,

$$
\operatorname{dim}_{H} \mu=\inf \left\{\operatorname{dim}_{H} A: \mu(A)=1\right\}
$$

$=\underset{\mu \sim x}{\operatorname{esssup}} \liminf _{r \rightarrow 0+} \frac{\log \mu\left(B_{r}(x)\right)}{\log r}$,

Families of self-similar IFS

Let $I \subset \mathbb{R}$ be a compact parameter interval and $m \geq 2$. For every parameter $t \in I$ given a self - similar IFS on the line:

$$
\Phi_{t}:=\left\{\varphi_{i, t}(x)=r_{i}(t) \cdot\left(x-a_{i}(t)\right)\right\}_{i=1}^{m},
$$

where

$$
r_{i}: I \rightarrow(-1,1) \backslash\{0\} \text { and } a_{i}: I \rightarrow \mathbb{R}
$$

are real analytic functions. Let Π_{t} be the natural projection from $\Sigma:=\{1, \ldots, m\}^{\mathbb{N}}$ to the attractor Λ_{t} of Φ_{t}.

Families of self-similar IFS (cont.)

For every probability vector $\mathbf{p}:=\left(p_{1}, \ldots, p_{m}\right)$ the associated self-similar measure is

$$
\nu_{\mathbf{p}, t}:=\left(\Pi_{t}\right)_{*}\left(\mathbf{p}^{\mathbb{N}}\right) .
$$

Its similarity dimension is defined by

$$
\operatorname{dim}_{\mathrm{S}}\left(\nu_{\mathbf{p}, t}\right):=\frac{\sum_{i=1}^{m} p_{i} \log p_{i}}{\sum_{i=1}^{m} p_{i} \log r_{i}(t)}
$$

The similarity dimension of Λ_{t} is the solution $s(t)$ of

$$
r_{1}^{s(t)}(t)+\cdots+r_{m}^{s(t)}(t)=1
$$

Families of self-similar IFS (cont.)

We say that a parameter $t \in I$ is exceptional if either

$$
\operatorname{dim}_{H} \Lambda_{t}<\min \{1, s(t)\}
$$

or there exists a probability vector $\mathbf{p}:=\left(p_{1}, \ldots, p_{m}\right)$ such that

$$
\operatorname{dim}_{\mathrm{H}}\left(\nu_{\mathbf{p}, t}\right)<\min \left\{1, \operatorname{dim}_{\mathbf{S}}\left(\nu_{\mathbf{p}, t}\right)\right\} .
$$

Families of self-similar IFS (cont.)

Theorem 1.2 (Hochman)
Assume that for $\mathbf{i}, \mathbf{j} \in \Sigma=\{1, \ldots, m\}^{\mathbb{N}}$ we have

$$
\text { if } \Pi_{t}(\mathbf{i})=\Pi_{t}(\mathbf{j}) \text { holds for all } t \in I \text { then } \mathbf{i}=\mathbf{j}
$$

Then both the Hausdorff and the packing dimension of the set of exceptional parameters are equal to 0.

Introduction

- Abstract
- Notation
- An old result of Bárány Balázs
- Hochman-condition
(2) Results
- Theorem A
- Theorem B
- Proposition C
- Theorem D

Feng-Hu Theorem about Ledrappier-Young formula

- Notation
- The self-similar case
- Diagonally self-affine case

Stuff what I am going to have no time for

Theorem A

Theorem A Let Φ be an IFS of the form (1) and let μ be a self-affine measure of the form (2). Without loss of generality we may assume that

$$
\chi_{\alpha} \leq \chi_{\beta}
$$

(i.e. the direction of y-axis is strong stable direction).

Theorem A (cont.)

(1) Suppose Φ_{α} satisfies the Hochman-condition and $\frac{h_{\mu}}{\chi} \leq 1$. Then
χ_{α}

$$
\operatorname{dim}_{H} \mu=\frac{h_{\mu}}{\chi_{\alpha}} .
$$

(2) Suppose Φ_{α} and Φ_{β} satisfy the Hochman-condition

$$
\text { and } \frac{h_{\mu}}{\chi_{\beta}} \leq 1<\frac{h_{\mu}}{\chi_{\alpha}} \text {. Then }
$$

$$
\operatorname{dim}_{H} \mu=1+\frac{h_{\mu}-\chi_{\alpha}}{\chi_{\beta}} .
$$

Road towards Theorem B

As a consequence of Theorem A we can calculate the dimension of the attractor.

Denote by s_{α} and s_{β} the similarity dimensions of the IFSs Φ_{α} and Φ_{β} respectively, i.e. s_{α} and s_{β} are the unique solutions of the equations
(7)

$$
\sum_{i=1}^{m}\left|\alpha_{i}\right|^{s_{\alpha}}=1, \text { and } \sum_{i=1}^{m}\left|\beta_{i}\right|^{s_{\beta}}=1 .
$$

Theorem B

Theorem B Let Φ be an IFS of the form (1) and let Λ be the attractor of Φ. Without loss of generality we may assume that $s_{\beta} \leq s_{\alpha}$.

Theorem B (cont.)

(1) Suppose Φ_{α} satisfies the Hochman-condition and $s_{\alpha} \leq 1$. Then

$$
\operatorname{dim}_{H} \Lambda=\operatorname{dim}_{B} \Lambda=s_{\alpha} .
$$

(2) Suppose Φ_{α} and Φ_{β} satisfy the Hochman-condition and $s_{\beta} \leq 1<s_{\alpha}$. Then

$$
\operatorname{dim}_{H} \Lambda=\operatorname{dim}_{B} \Lambda=d
$$

where d is the unique solution of

$$
\sum_{i=1}^{m}\left|\alpha_{i}\right|\left|\beta_{i}\right|^{d-1}=1
$$

Proposition C

Proposition C
Let Φ be an IFS of the form (1). Let us assume that

$$
\max _{i \neq j}\left\{\left|\alpha_{i}\right|+\left|\alpha_{j}\right|\right\}<1
$$

and

$$
\sum_{i=1}^{m}\left|\beta_{i}\right| \leq 1
$$

Then there exists a set $\mathcal{T} \subset \mathbb{R}^{2 m}$ such that $\operatorname{dim}_{P} \mathcal{T} \leq 2 m-2$ and for every
$\left(t_{1,1}, \ldots, t_{m, 1}, t_{1,2}, \ldots, t_{m, 2}\right) \in \mathbb{R}^{2 m} \backslash \mathcal{T}$ the statements of Theorem A and Theorem B hold.

We obtained these estimates by using the method of Fraser and Shmerkin.

Peres and Shmerkin showed that for every self-similar set in \mathbb{R} or \mathbb{R}^{2} for any $\varepsilon>0$ there exists a self-similar set contained in the original one with dimension ε-close to the dimension of the original set such that the IFS satisfies strong separation condition (SSC) and the functions share a common contraction ratio. That is, the IFS is homogeneous.

We show that under the above conditions there exists a homogeneous self-affine set satisfying the strong separation condition which approximates the dimension of the original set from below.

Theorem D

For an IFS $\mathcal{G}=\left\{\psi_{i}\right\}_{i=1}^{M}$ we define the k th iterate by

$$
\mathcal{G}^{k}=\left\{\psi_{i_{1}} \circ \cdots \circ \psi_{i_{k}}\right\}_{i_{1}, \ldots, i_{k}=1}^{M} .
$$

Theorem D Let Φ be an IFS of the form (1) and let Λ be the attractor of Φ. Without loss of generality we may assume that $s_{\beta} \leq s_{\alpha}$. Suppose that either
(1) Φ_{α} satisfies the Hochman-condition and $s_{\alpha} \leq 1$, or
(2) $\Phi_{\alpha}, \Phi_{\beta}$ satisfy the Hochman-condition and $s_{\beta} \leq 1<s_{\alpha}$.

Theorem D (cont.)

Then for every $\varepsilon>0$ there exists a homogeneous affine IFS ψ of the form
(8) $\quad \Psi=\left\{T_{j}(x, y)=\left(\alpha x+u_{j, 1}, \beta y+u_{j, 2}\right)\right\}_{j=1}^{k}$
with attractor $\Gamma \subseteq \Lambda$ such that Ψ is a subsystem of some iterate of Φ and satisfies the SSC, i.e.
$T_{i}(\Gamma) \cap T_{j}(\Gamma)=\emptyset$ and

$$
\operatorname{dim}_{H} \Lambda-\varepsilon=\operatorname{dim}_{P} \Lambda-\varepsilon=\operatorname{dim}_{B} \Lambda-\varepsilon
$$

$$
\leq \operatorname{dim}_{H} \Gamma=\operatorname{dim}_{P} \Gamma=\operatorname{dim}_{B} \Gamma
$$

Introduction

- Abstract
- Notation
- An old result of Bárány Balázs
- Hochman-condition

Results

- Theorem A
- Theorem B
- Proposition C
- Theorem D
(3) Feng-Hu Theorem about Ledrappier-Young formula
- Notation
- The self-similar case
- Diagonally self-affine case

Notation

First we recall here some results and notations of Feng and Hu . Let

$$
\Psi=\left\{\psi_{i}\right\}_{i=1}^{M}
$$

be a strictly contracting IFS mapping $[0,1]^{d}$ into itself. Let

$$
\Sigma=\{1, \ldots, M\}^{\mathbb{N}}
$$

be the corresponding symbolic space, σ the usual left-shift operator on Σ and let m be a σ-invariant ergodic measure on Σ.

Notation (cont.)

Let Π be the natural projection, i.e.

$$
\Pi\left(i_{0}, i_{1}, \ldots\right)=\lim _{n \rightarrow \infty} \psi_{i_{0}} \circ \cdots \circ \psi_{i_{n}}(\underline{0}) .
$$

Let

$$
\mathcal{P}=\{[1], \ldots,[M]\}
$$

be the partition of Σ, where

$$
[i]=\left\{\mathbf{i} \in \Sigma: i_{0}=i\right\}
$$

and denote by \mathcal{B} the Borel σ-algebra of \mathbb{R}^{d}.

The projection entropy

We define the projection entropy of m under Π with respect to Ψ as

$$
h_{\Pi}(m):=H_{m}\left(\mathcal{P} \mid \sigma^{-1} \Pi^{-1} \mathcal{B}\right)-H_{m}\left(\mathcal{P} \mid \Pi^{-1} \mathcal{B}\right)
$$

where $H_{m}(\xi \mid \eta)$ denotes the usual conditional entropy of ξ given η.

Feng-Hu Theorem for self-similar IFS

Let ψ be an IFS of similarities on the real line. Then

$$
\operatorname{dim}_{H} \mu=\frac{h_{\Pi}(\mathbb{P})}{\chi}
$$

where $\mu=\mathbb{P} \circ \Pi^{-1}$ and

$$
\chi=-\sum_{i=1}^{M} p_{i} \log \left|\psi_{i}^{\prime}(0)\right|
$$

is the Lyapunov exponent.

Notation

Let us assume that the maps of the IFS
$\psi=\left\{\psi_{i}:[0,1]^{d} \mapsto[0,1]^{d}\right\}_{i=1}^{M}$ have the form

$$
\psi_{i}\left(x_{1}, \ldots, x_{d}\right)=\left(\rho_{1, i} x_{1}+t_{1, i}, \ldots, \rho_{d, i} x_{d}+t_{d, i}\right)
$$

For a $\mathbb{P}=\left\{p_{1}, \ldots, p_{M}\right\}^{\mathbb{N}}$ Bernoulli measure, denote the Lyapunov exponents by

$$
\chi_{j}=-\sum_{i=1}^{M} p_{i} \log \left|\rho_{j, i}\right| .
$$

Without loss of generality we may assume that

$$
0<\chi_{1} \leq \chi_{2} \leq \cdots \leq \chi_{d} .
$$

Notation (cont.)

Let Ψ_{k} be the IFS with functions restricted to the first k coordinates, i.e. $\Psi_{k}=\left\{\psi_{i}^{k}:[0,1]^{k} \mapsto[0,1]^{k}\right\}_{i=1}^{M}$, where

$$
\psi_{i}^{k}\left(x_{1}, \ldots, x_{k}\right)=\left\{\left(\rho_{1, i} x_{1}+t_{1, i}, \ldots, \rho_{k, i} x_{k}+t_{k, i}\right)\right\}_{i=1}^{M} .
$$

Denote the natural projection w.r.t Ψ_{k} by Π_{k}. Moreover, let

$$
\mu_{k}=\mathbb{P} \circ \Pi_{k}^{-1}
$$

where $P=\left(p_{1}, \ldots p_{k}\right)^{\mathbb{N}}$.

Feng-Hu Theorem

For every $1 \leq k \leq d$,

$$
\operatorname{dim}_{H} \mu_{k}=\frac{h_{\Pi_{1}}(\mathbb{P})}{\chi_{1}}+\sum_{j=2}^{k} \frac{h_{\Pi_{j}}(\mathbb{P})-h_{\Pi_{j-1}}(\mathbb{P})}{\chi_{j}} .
$$

In particular, on the plane assuming SSC
(9) $\quad \operatorname{dim}_{\mathrm{H}}(\mu)=\frac{h_{\mu}}{\chi_{2}(\mu)}+\left(1-\frac{\chi_{1}(\mu)}{\chi_{2}(\mu)}\right) \cdot \operatorname{dim}_{\mathrm{H}}\left(\mu_{x}\right)$,
where $\mu_{x}=\operatorname{proj}_{x} \mu$. That is if SSC holds then (10)

$$
D(\mu)=\operatorname{dim}_{\mathrm{H}}(\mu) \Longleftrightarrow \operatorname{dim}_{\mathrm{H}}\left(\mu_{x}\right)=\min \left\{1, \frac{h_{\mu}}{\chi_{1}(\mu)}\right\} .
$$

Introduction

- Abstract
- Notation
- An old result of Bárány Balázs
- Hochman-condition

Results

- Theorem A
- Theorem B
- Proposition C
- Theorem D
(3) Feng-Hu Theorem about Ledrappier-Young formula
- Notation
- The self-similar case
- Diagonally self-affine case

4 Stuff what I am going to have no time for

References

[1] B. Bárány: Dimension of the generalized 4-corner set and its projections, Erg. Th. \& Dyn. Sys. 32 (2012), 1190-1215.
[2] K. Falconer: The Hausdorff dimension of some fractals and attractors of overlapping construction, J. Stat. Phys. 47 (1987), no. 1-2, 123-132.
[3] K. Falconer: The Hausdorff dimension of self-affine fractals, Math. Proc. Camb. Phil. Soc. 103 (1988), 339-350.
[4] K. Falconer: Fractal geometry. Mathematical foundations and applications. Third edition. John Wiley \& Sons Ltd., Chichester, 2014
[5] K. Falconer and J. Miao: Dimensions of self-affine fractals and multifractals generated by upper-triangular matrices, Fractals 15 (2007), no. 3, 289-299.
[6] Á. Farkas: Projections of self-similar sets with no separation condition, to appear in Israel J Math, 2014, available at arXiv:1307.2841.
[7] D.-J. Feng and H. Hu: Dimension Theory of Iterated Function Systems, Comm. Pure Appl. Math. 62 (2009), no. 11, 1435-1500.
[8] J. Fraser and P. Shmerkin: On the dimensions of a family of overlapping self-affine carpets, to appear in Erg. Th. \& Dyn. Sys., 2014, available at arXiv:1405.4919.
[9] M. Hochman: On self-similar sets with overlaps and inverse theorems for entropy, Annals of Math. 180 (2014), no. 2, 773-822.
[10] M. Hochman: On self-similar sets with overlaps and inverse theorems for entropy in \mathbb{R}^{d}, preprint, 2015. available at arXiv:1503.09043.
[11] L. B. Jonker and J. J. P. Veerman: Semicontinuity of Dimension and Measure for Locally Scaling Fractals, Fund. Math., 173, (2002), 113-131.

References (cont.)

[12] T. Jordan, M. Pollicott and K. Simon: Hausdorff dimension for randomly perturbed self affine attractors, Comm. Math. Phys. 270 (2007), no. 2, 519-544.
[13] A. Käenmäki and P. Shmerkin: Overlapping self-affine sets of Kakeya type, Ergod. Th. \& Dynam. Sys. 29 (2009), no. 3, 941-965.
[14] T. Orponen: On the Distance Sets of Self-Similar Sets, Nonlinearity 25 (2012), 1919-1929.
[15] Y. Peres and P. Shmerkin: Resonance between Cantor sets, Ergod. Th. \& Dynam. Sys. 29 (2009), no. 1, $201-221$.
[16] F. Przytycki and M. Urbanski: On the Hausdorff dimension of some fractal sets, Studia Math. 93 (1989), no. 2, 155-186.
[17] P. Shmerkin: Overlapping self-affine sets, Indiana Univ. Math. J. 55 (2006), no. 4, 1291-1331.
[18] K. Simon and B. Solomyak: On the dimension of self-similar sets, Fractals 10 (2002), no. 1, 59-65.
[19] B. Solomyak: Measure and dimension for some fractal families, Math. Proc. Camb. Phil. Soc. 124, (1998), no. 3, 531-546.
[20] F. Spitzer: Principles of random walk. Springer-Verlag, New York, second edition, 1976. Graduate Texts in Mathematics, Vol. 34.

